Abstract
Cu(InxGa1-x)Se2(CIGS) precursor films were prepared on ITO glass with potentiostatic electrodeposition. High quality CIGS films were obtained by selenization of the precursor films at high temperature in tubular furnace full of argon gas. X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis-NIR spectroscopy were used to characterize the structure, morphology, composition and Vis-NIR absorption of CIGS films, respectively. XRD results show the selenized CIGS films have a preferential orientation (112) with average crystallite of 24.7 nm. Raman spectroscopy reveals that the CIGS films are pure quaternaryphases with chalcopyrite structure, and without binary or ternary phases in the films. Vis-NIR measurements determine that the bandgap of CIGS increases with the increase of Ga concentration in the film. When the Ga concentration is 5.41%, its bandgap is about 1.11 eV, and the calculated ratio of Ga to (Ga+In) is 16.3%, which is less than the ratio of Ga to (Ga+In), 21.4%, measured by SEM. This indicates that crystallinity of CIGS filmsneeds to be further improved. All the measurements demonstratethat optimum ITO/CIGS has a promising application in bifacial solar cells. In this paper, we provide a newmethodtoelectrodeposit low cost CIGS precursor films and a new method forselenization ofthe precursor films at high temperature. As a result, theuniform and compact CIGS films with good adhesion on ITO are successfully fabricated by these methods. The above characterization show that we have obtained CIGS films with high crystallinity, near stoichiometry, few impurity phases and superior light absorption. Electrodeposition, like magnetron sputtering, is very suitable for large-scale industrial production. The research work in this paper is therefore important and considerable to massive production of electrodeposition of CIGS films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.