Abstract
This research shows the detailed comparison of Raman and near-infrared (NIR) spectroscopy as Process Analytical Technology tools for the real-time monitoring of a protein purification process. A comprehensive investigation of the application and model development of Raman and NIR spectroscopy was carried out for the real-time monitoring of a process-related impurity, imidazole, during the tangential flow filtration of Receptor-Binding Domain (RBD) of the SARS-CoV-2 Spike protein. The fast development of Raman and NIR spectroscopy-based calibration models was achieved using offline calibration data, resulting in low calibration and cross-validation errors. Raman model had an RMSEC of 1.53 mM, and an RMSECV of 1.78 mM, and the NIR model had an RMSEC of 1.87 mM and an RMSECV of 2.97 mM. Furthermore, Raman models had good robustness when applied in an inline measurement system, but on the contrary NIR spectroscopy was sensitive to the changes in the measurement environment. By utilizing the developed models, inline Raman and NIR spectroscopy were successfully applied for the real-time monitoring of a process-related impurity during the membrane filtration of a recombinant protein. The results enhance the importance of implementing real-time monitoring approaches for the broader field of diagnostic and therapeutic protein purification and underscore its potential to revolutionize the rapid development of biological products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.