Abstract
Raman and infrared phonon spectra of ultrasmall (1.8 nm) colloidal CdS nanoparticles (usNPs) are presented. Multiphonon scattering by optical phonons up to the third order is observed in the Raman spectra at low temperature and resonant (325 nm) excitation. The first-order optical phonon peak is a superposition of several components, two of which can be assigned to surface optical (SO) and longitudinal optical (LO) modes, respectively. The LO mode, being markedly broadened compared to that of spectra of regular (>2 nm) NPs, is related to phonon confinement and bond distortion induced by a significant structural relaxation in usNPs. A shoulder observed above the LO frequency is either due to the density of phonon states induced by distorted surface bonds or due to higher-order scattering processes involving optical and acoustic phonons. The Raman peaks of usNPs do not reveal the upward shift and narrowing upon decreasing temperature from 300 K down to 85 K typical for crystalline semiconductors, even thoug...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have