Abstract

ABSTRACT Ram pressure stripping (RPS) is known to be a key environmental effect that can remove interstellar gas from galaxies in a cluster. The RPS process is commonly described as a competition between the ram pressure by the intracluster medium and the anchoring pressure on the interstellar medium by the gravitational potential of a galaxy. However, the actual gas stripping process can be more complicated due to the complexity of gas physics such as compression and geometrical self-shielding as well as cooling and heating. In order to verify how well the observed signatures of the RPS process can be understood as simple momentum transfer, we compare the stripping radii of Virgo cluster galaxies in different stages of RPS measured from the H i observation with the predicted gas truncation radii for the given conditions. For the sample undergoing active RPS, we generally find good agreements between predictions and observations within a measurement uncertainty. On the other hand, galaxies likely in the early or later RPS stage and/or the ones with signs of environmental impacts other than RPS such as tidal interaction or starvation show some discrepancies. Our results imply that the conventional RPS relation works reasonably well in a broad sense when RPS is the most dominant process and the galaxy is located where the surrounding environment can be well defined. Otherwise, more careful inspections on the second mechanism and local environment are required to assess the impact of RPS on the target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.