Abstract

PurposeTurboshaft engines usually include one centrifugal compressor due to its high-pressure ratio, stability and compactness. Many designers rely on positive raking to decrease tip gap flow and therefore losses. However recent optimization studies revealed geometries contradicting this canonic view. Hence, this paper aims to investigate how the rake angle alone can influence performance and to which extent.Design/methodology/approachA turboshaft representative impeller was chosen and altered for null and +/−30° rake angles. Menter's shear stress transport model is used for steady computational fluid dynamics simulations, sweeping the nominal speedline at various tip clearances. Backsweep distribution is identical in all cases, isolating rake influence.FindingsPressure ratio was lowered for the both positively and negatively raked blades, but through distinct aerodynamic mechanisms. Although the flow through the tip gap was lower for the positive rake, this is due to lower blade loading. Splitter comparison reveal that these effects are more pronounced in the radial regions.Practical implicationsSome of the findings may extend beyond turboshaft engines, into turbochargers, home appliances or industrial blowers. However, all extrapolations must consider specific differences between these applications. Turboshaft compressors designers can benefit from this study when setting up their free parameters and penalty functions in the early concept stages.Originality/valueOnly few similar studies can be found in the literature to date, none similar to turboshaft applications. Also, this impeller is designed to eliminate leading edge shocks and suction side boundary layer separation, which makes it easier to isolate the tip gap flow effects. The authors also provide a framework on which semi-empirical design equations can be further developed to incorporate rake into 1D design tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.