Abstract

Rainfall and surface runoff are the two most important components, which control the groundwater recharge of the basin. The long-term groundwater recharge of an aquifer gets affected by the population growth, irregular agriculture activities and industrialization. Hence, estimation of rainfall-surface runoff is very much essential for proper groundwater management practices. In the present study, Soil Conservation Service Curve Number (SCS-CN) model was employed in combination with geospatial techniques to estimate rainfall-surface runoff for the Lower Bhavani River basin in South India. To develop the SCS-CN model, rainfall data were obtained for 33 years (1983–2015) from 22 rain gauge stations spread over the basin. IRS LISS-IV satellite data of 5.8 m spatial resolution were used to analyze the land use/land cover (LU/LC) behavior. Based on the soil properties, four Hydrological Soil Groups (HSG) were identified in the basin which is most significant for surface runoff estimation. Curve Number (CN) values were obtained for various Antecedent Moisture Conditions (AMC) such as dry condition (AMC I), average condition (AMC II) and wet condition (AMC III). Spatial distribution of CN values was plotted using Geographical Information System (GIS) for the entire Lower Bhavani Basin to assess the surface runoff potential. The results indicate that the annual rainfall varies from 267 mm (2002) to 1528.6 mm (2005), and the annual surface runoff varies from 102.04 mm (1985) to 463.02 mm (2010). The SCS-CN model outputs predict that the average surface runoff of the basin is 211.99 mm, and the average surface runoff volume is 81,995,380 m3. The study also indicates that nearly 53% of the basin area is dominated by high to very high surface runoff potential. Finally, the output of surface runoff potential was validated with the Average Groundwater Level Fluctuation (AGLF) observed in 57 wells spread over the entire basin. The basin AGLF ranges from 2.32 to 21.72 m. The surface runoff potential categories are satisfactorily matching with the AGLF categories. Moderate surface runoff as well as moderate AGLF zones mostly occupy the central portion of the basin, which possess good groundwater potential. However, the high surface runoff zones in the basin lead more surface water flow into the river channels, which reduce the infiltration rate and decline the water table. This problem can be solved by constructing suitable artificial groundwater recharge structures across the river channels in the high surface runoff potential areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call