Abstract

Satellite rainfall products (SRPs) are becoming more accurate with ever increasing spatial and temporal resolution. This evolution can be beneficial for hydrological applications, providing new sources of information and allowing to drive models in ungauged areas. Despite the large availability of rainfall satellite data, their use in rainfall-runoff modelling is still very scarce, most likely due to measurement issues (bias, accuracy) and the hydrological community acceptability of satellite products.In this study, the real-time version (3B42-RT) of Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis, TMPA, and a new SRP based on the application of SM2RAIN algorithm (Brocca et al., 2014) to the ASCAT (Advanced SCATterometer) soil moisture product, SM2RASC, are used to drive a lumped hydrologic model over four basins in Italy during the 4-year period 2010–2013.The need of the recalibration of model parameter values for each SRP is highlighted, being an important precondition for their suitable use in flood modelling. Results shows that SRPs provided, in most of the cases, performance scores only slightly lower than those obtained by using observed data with a reduction of Nash–Sutcliffe efficiency (NS) less than 30% when using SM2RASC product while TMPA is characterized by a significant deterioration during the validation period 2012–2013. Moreover, the integration between observed and satellite rainfall data is investigated as well. Interestingly, the simple integration procedure here applied allows obtaining more accurate rainfall input datasets with respect to the use of ground observations only, for 3 out 4 basins. Indeed, discharge simulations improve when ground rainfall observations and SM2RASC product are integrated, with an increase of NS between 2 and 42% for the 3 basins in Central and Northern Italy. Overall, the study highlights the feasibility of using SRPs in hydrological applications over the Mediterranean region with benefits in discharge simulations also in well gauged areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.