Abstract

Remote sensing observations and artificial intelligence algorithms have emerged as key components for crop yield estimation at various scales during the past decades. However, the utilization of multi-source satellite data and machine learning for estimating aggregated crop yield at the regional level in Europe has been only scarcely explored. Our study aims to bridge this research gap by focusing on the district-level spring barley yield estimation in southern Sweden from 2017 to 2022. We developed an estimation method with the random forest (RF) approach using four satellite-derived products along with two climate variables. These variables were used individually and in combinations as inputs for the RF approach. The results showed that vegetation indices (VIs) outperformed solar-induced chlorophyll fluorescence (SIF) in barley yield estimation, while combining VIs and SIF variables achieved the highest model performance (R2 = 0.77, RMSE = 488 kg/ha). The inclusion of climate variables generally had little added contributions to the model performance. Importantly, barley yield prediction could be achieved two months prior to harvest, using monthly VIs and SIF data from April and May. Our study demonstrated the feasibility of using freely accessible satellite data and the machine learning approach for estimating crop yield at the pan-European regional level. We expect that our proposed methodology can be extended to different crop types and regional-scale crop yield estimation in Europe, benefiting national and local authorities in making agricultural productivity decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.