Abstract
Fifteen rain measurement instruments were deployed on the National Oceanic and Atmospheric Administration Ship Ronald H. Brownduring the 1997 Pan American Climate Studies (PACS) Tropical Eastern Pacific Process Study (TEPPS). To examine differences in rainfall catchment related to instrument design, three types of disdrometers, an optical rain gauge, a ship rain gauge, and a siphon gauge were clustered in one location to ensure similar exposure. To address exposure effects, eight siphon rain gauges were deployed on different sides of the ship and on several different levels. Cross-ship differences in hourly rainfall accumulation were negligible when relative wind speeds were less than 3 m s21 and became significant at greater than 5 m s21, especially when the relative wind direction was 208 or greater from the bow. Instruments with both horizontal and vertical catchment surfaces yielded a measurable collection advantage over instruments with only horizontal catchment surfaces. Analysis of data collected during TEPPS using a multiple-instrument, multiple-location approach yields the following recommendations for reducing uncertainty in rain measurement at sea. The first two of the four recommendations apply to rain measurements on buoys as well as on ships. 1) Deploy experimental rain measurement instrumentation paired with a baseline minimum siphon gauge or other trusted instrument. Comparison of the rain-rate time series between the baseline gauge measurements and the experimental instrument data permits detection of erratic behavior and bias. 2) Apply an appropriate wind correction. To do this step properly, both a wind correction formula derived for the specific gauge type and a nearby measurement of relative wind are needed. These features are already incorporated into the ship rain gauge. 3) Locate gauges where distortion of the airflow by the ship is locally minimized and relative wind speeds are as low as possible. This analysis confirms previous recommendations for placement of rain instrumentation at lower locations as long as the location is protected against direct spray from the sea without being shadowed by higher objects. 4) Place instrumentation on both sides of ship and along centerline. Airflow distortion by the ship itself can induce significant differences between port and starboard accumulations at high wind speeds and high angle of wind attack to the bow. Multiple locations aid in constraining error, because relative wind direction and speed vary during a cruise and there is no one perfect location on ship for rain instrumentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.