Abstract
Coloring graph is giving a color to a set of vertices and a set of edges on a graph. The condition for coloring a graph is that each color is different for each neighboring member graph. Coloring graph can be done by mapping a different color to each vertex or edge. Rainbow coloring is a type of rainbow connected with coloring edge. It ensures that every graph G has a rainbow path. A rainbow path is a path in a graph where no two vertices have the same color. The minimum number of colors in a rainbow connected graph is called the rainbow connection number denoted by rc(G). The graphs used in this study are the Amal(Fn,xz,m) graph and the Amal(On,xz,m) graph.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Contemporary Mathematics and Applications (ConMathA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.