Abstract
Leading edge erosion on wind turbine blades is a common issue, particularly for wind turbines placed in regions characterized by high wind speeds and precipitation. This study presents the development of a rain erosion atlas for Scandinavia and Finland, based on ERA5 reanalysis and NORA3 mesoscale model data on rainfall intensity and wind speed over five years. The IEA 15 MW reference wind turbine is used as an example to evaluate impingement water impact and erosion onset time for a commercial coating material. The damage progression is modeled by combining the wind speed and rainfall data with an empirical damage model that relates impinged water (H) as a function of impact velocity to the time of erosion onset. Comparative analyses at two weather station locations show that NORA3 data more accurately aligns with measurements in terms of power spectral density, mean wind speed, rainfall, and erosion prediction than ERA5. NORA3-based atlas layers offer finer spatial detail and predict shorter erosion onset times over land compared to ERA5, particularly in complex terrain. Conversely, the ERA5-based atlas suggests a shorter onset of erosion offshore. Based on NORA3 data, erosion onset time is estimated at 5 years on average for Baltic Sea wind farm sites and 3.2 years for sites in the North Sea.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have