Abstract

The application of Doppler-based LIght Detection and Ranging (LIDAR) technology for determining track curvature and lateral irregularities, including alignment and gage variation, are investigated. The proposed method uses track measurements by two low-elevation, slightly tilted LIDAR sensors nominally pointed at the rail gage face on each track. The Doppler LIDAR lenses are installed with a slight forward angle to measure track speed in both longitudinal and lateral directions. The lateral speed measurements are processed for assessing the track gage and alignment variations, using a method that is based on the frequency bandwidth dissimilarities between the vehicle speed and track geometry irregularity. Using the results from an extensive series of tests with a body-mounted Doppler LIDAR system on-board a track geometry measurement railcar, the study indicates a close match between the LIDAR measurements and those made with existing sensors on-board the railcar. The field testing conducted during this study indicates that LIDAR sensors could provide a reliable, non-contact track monitoring instrument for field use in various weather and track conditions, potentially in a semi-autonomous or autonomous manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.