Abstract
Railway transportation is one of the main modes of modern transportation. Under the dual constraints of air quality improvement and carbon neutrality achievement, clarifying the emission trend of CO2 and pollutants in railway transportation is of great significance for pollution and carbon reduction in the transport sector. In this study, the CO2 and pollutant emission characteristics of Chinese railways from 2001 to 2018 were analyzed based on the fuel life cycle method. Then, railway emission trends from 2019-2030 were assessed combined with scenario analysis. The results showed that with the advancement of railway electrification, the use of new diesel locomotives, and the continuous upgrading of fuel standards, the total CO2 and pollutant emissions in the fuel life cycle of railway transportation showed an upward and downward trend, respectively. In 2018, the total emissions of CO2, NOx, CO, BC, and SOx from railway transportation were 3780.29×104t, 11.98×104t, 3.94×104t, 0.20×104t, and 3.08×104t, respectively. Accelerating the improvement of power structure and reducing unit energy consumption were the best single control strategies to reduce railway emissions of CO2, SOx, NOx, BC, and CO, respectively. Under the comprehensive scenario of actively responding to railway pollution and carbon reduction, the emission reduction rates of CO2, NOx, CO, BC, and SOx could reach 35%, 37%, 39%, 32%, and 45%, respectively. The stagnation of power structure reform or the railway electrification process will lead to a significant increase in total emissions of railway transportation. Therefore, the pollution and carbon reduction of railway transportation requires continuous attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.