Abstract

BackgroundThe receptor for advanced glycation end products (RAGE) plays an important role in obesity-associated insulin sensitivity. We have also previously reported that RAGE deficiency improved insulin resistance in obesity-induced adipose tissue. The current study was aimed to elucidate the sex-specific mechanism of RAGE deficiency in adipose tissue metabolic regulation and systemic glucose homeostasis.MethodsRAGE-deficient (RAGE−/−) mice were fed a high-fat diet (HFD) and subjected to glucose and insulin tolerance tests. Subcutaneous adipose tissue (sAT) was collected, and macrophage polarization was assessed by quantitative real-time PCR. Immunoblotting was performed to evaluate the insulin signaling in adipose tissues.ResultsUnder HFD feeding conditions, body weight and adipocyte size of female RAGE deficient (RAGE−/−) were markedly lower than that of male mice. Female RAGE−/− mice showed significantly improved glucose and insulin tolerance compared to male RAGE−/− mice, accompanied with increased M2 macrophages polarization. Expressions of genes involved in anti-oxidant and browning were up-regulated in adipose tissues of female RAGE−/− mice. Moreover, insulin-induced AKT phosphorylation was significantly elevated in adipose tissue in female RAGE−/− mice compared to male RAGE−/− mice.ConclusionsOur findings suggest that RAGE-mediated adipose tissue insulin resistance is sex-specific, which is associated with different expression of genes involved in anti-oxidant and browning and insulin-induced AKT phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.