Abstract

BackgroundThe hypothalamic–pituitary–adrenal (HPA) and -gonadal (HPG) axes are two major pathways that connect the neural and endocrine systems in vertebrates. Factors such as prenatal stress and maternal exposure to exogenous steroids have been shown to affect these pathways during fetal development. Another less studied factor is the transfer of hormones across fetuses in multifetal pregnancies. This form of transfer has been shown to influence the morphology, anatomy, physiology, and behavior of the offspring in litter-bearing mammals, an influence termed the intrauterine position (IUP) effect. In this study, we sought to delineate how the IUP effects HPA and HPG brain receptors, peptides, and enzymes (hereafter components) in utero and how these influences may differ between males and females.MethodsWe utilized the unconventional model of culled free-ranging nutria (Myocastor coypus), with its large natural variation. We collected brain tissues from nutria fetuses and quantified the expression of key HPA and HPG components in three brain regions: prefrontal cortex, hypothalamus, and striatum.ResultsWe found an interaction between sex and IUP in the mineralocorticoid receptor (MR), gonadotropin-releasing hormone receptor (GNRHR), androgen receptor (AR), and estrogen receptor alpha (ESR1). IUP was significant in both gonadotropin-releasing hormone (GnRH) and its receptor GNRHR, but in different ways. In the hypothalamus, fetuses adjacent to same-sex neighbors had higher expression of GnRH than fetuses neighboring the opposite sex. Conversely, in the cortex, GNRHR exhibited the inverse pattern, and fetuses that were neighboring the opposite sex had higher expression levels than those neighboring the same sex. Regardless of IUP, in most components that showed significant sex differences, female fetuses had higher mRNA expression levels than male fetuses. We also found that HPA and HPG components were highly related in the early stages of gestation, and that there was an interaction between sex and developmental stage. In the early stages of pregnancy, female component expression levels were more correlated than males’, but in the last trimester of pregnancy, male components were more related to each other than female’s.ConclusionsThis study suggests that there are sexually different mechanisms to regulate the HPA and HPG axes during fetal development. Higher mRNA expression levels of endocrine axes components may be a mechanism to help females cope with prolonged androgen exposure over a long gestational period. Additionally, these findings suggest different coordination requirements of male and female endocrine axes during stages of fetal development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.