Abstract
We examined the effect of a constitutively active Raf protein (Raf-CAAX) on the differentiation and the coincident apoptosis of skeletal myoblasts. We found that a low level of Raf signaling leads to accelerated differentiation when compared to parental myoblasts, while a higher level of Raf signaling induces a transformed morphology and abrogates both differentiation and the coincident apoptosis. Raf signaling abrogates apoptosis without blocking the activation of caspase 3 and the subsequent cleavage of caspase 3 substrates. Eliminating the signal from Raf through MEK does not restore the ability to differentiate or to undergo apoptosis in the myoblasts with a high level of Raf signal, nor does it abrogate the accelerated differentiation observed in myoblasts with lower levels of Raf signal. Constitutive signaling through MEK is required, however, to maintain a transformed morphology. These results indicate that the effect of Raf on the differentiation and apoptosis of skeletal myoblasts is dictated by the level of Raf signaling, and that Raf signaling sufficient to abrogate the apoptosis coincident with differentiation does so downstream of caspase 3 signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.