Abstract
Activated Raf has been linked to such opposing cellular responses as the induction of DNA synthesis and the inhibition of proliferation. However, it remains unclear how such a switch in signal specificity is regulated. We have addressed this question with a regulatable Raf-androgen receptor fusion protein in murine fibroblasts. We show that Raf can cause a G1-specific cell cycle arrest through induction of p21Cip1. This in turn leads to inhibition of cyclin D- and cyclin E-dependent kinases and an accumulation of hypophosphorylated Rb. Importantly, this behavior can be observed only in response to a strong Raf signal. In contrast, moderate Raf activity induces DNA synthesis and is sufficient to induce cyclin D expression. Therefore, Raf signal specificity can be determined by modulation of signal strength presumably through the induction of distinct protein expression patterns. Similar to induction of Raf, a strong induction of activated Ras via a tetracycline-dependent promoter also causes inhibition of proliferation and p21Cip1 induction at high expression levels. Thus, p21Cip1 plays a key role in determining cellular responses to Ras and Raf signalling. As predicted by this finding we show that Ras and loss of p21 cooperate to confer a proliferative advantage to mouse embryo fibroblasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.