Abstract

The World Health Organization (WHO) and the International Agency for Research on Cancer (IARC) have already classified radon as a human carcinogen and have demonstrated a correlation between environmental radon concentration and lung cancer risk. Radon dosimetry supplies valuable information about radioactive health risks in indoor environments. Dose measurements are traditionally based on laboratory analysis of alpha-ray traces in ionization chambers exposed to environmental air or passive detectors based on polycarbonate material. The main goal of this work is to develop a portable and small system with real-time indoor Radon detection capabilities. The developed system, with embedded processing and wireless communication capabilities, is based on a Zinc-Sulfat screen coupled to a Silicon Photomultiplier (SiPM) transducer, low cost read-out electronics and system ventilation. The device is able to monitor environmental data, so it could have multiple uses in research and industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call