Abstract

Radon dosimetry yields valuable information about radioactive health risks in closed environments. Indeed, World Health Organization (WHO) and the International Agency for Research on Cancer (IARC) have recently classified radon as a human carcinogen and have demonstrated a correlation between environmental radon concentration and lung cancer risk. Dose measurements are traditionally based on laboratory analysis of alpha-ray traces in ionization chambers exposed to environmental air. In this paper we propose a portable instrument for real-time radon alpha-ray detection based on a previously-developed high-resistivity-silicon BJT sensor and a low-cost, IC-based readout electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.