Abstract

Temperature-dependent conformations of linear polymer molecules adsorbed at carbon nanotube (CNT) interfaces are investigated through molecule dynamics simulations. Model polyethylene (PE) molecules are shown to have selective conformations on the CNT surface, controlled by atomic structures of the CNT lattice and geometric coiling energy. PE molecules form entropy driven assembly domains, and their preferred wrapping angles around large radius CNT (40, 40) reflect the molecule configurations with energy minimums on a graphite plane. While PE molecules prefer 0 degrees wrapping on small radius armchair CNT (5, 5) predominantly at low temperatures, their configurations are shifted to larger wrapping angle ones on a similar radius zigzag CNT (10, 0). A nematic transformation around 280 K is identified through the Landau-de Gennes theory, with molecule aligning along tube axis in extended conformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call