Abstract
In this work, the influence factors, namely chirality, temperature, radius and surface chemical modification, of the interaction energy for polyethylene (PE) molecule encapsulated into single-walled carbon nanotubes (SWNTs) had been investigated by molecular mechanics (MM) and molecular dynamics (MD) simulation. The results showed that all these factors would influence the interaction energy between PE and SWNTs. The interaction energy between PE molecule and the armchair SWNTs is largest among eight kinds of chiral SWNTs. The interaction energy decreases with the increase of temperature or the SWNT radius. The methyl, phenyl, hydroxyl, carboxyl, –F, and amino groups, have been introduced onto the surface of the SWNTs by the simulation software and the influence of SWNT chemical modification has also been investigated. The interaction energy between PE and chemically modified SWNTs is larger than that between PE and pristine SWNTs, and increases with increasing the concentration of the modified groups monotonously. In addition, the group electronegativity and van der Waals force will affect the interaction energy between PE and chemically modified SWNTs greatly, which can be attributed to the electronic structures of the chemically modified groups. This study can provide some useful suggestions for the composite material design and drug transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.