Abstract

Mixtures of Single-Walled Carbon Nanotubes (SWNTs) and polymers play an important role in practical applications such as ultrastrong lightweight materials and organic solar cells. In present work, we studied the interaction between SWNTs and polymers including poly(3-hexythiophene) (P3HT), Poly(2-methoxy-5-(3-7-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV), and Poly[[[(2ethylhexyl)oxy]methoxy-1,4-phenylene]-1,2-ethenediyl] (MEH-PPV) by molecular dynamics (MD) simulation. For the first time, we use molecular dynamics simulation based on a reactive force field (ReaxFF) to study the interaction between polymers and SWNTs. Interaction energy between polymers and SWNTs was calculated. Morphology of polymers adsorbed to the surface of SWNTs was investigated by the radius of gyration (Rg). Influence of temperature, SWNT radius, and chirality on interfacial adhesion of SWNT-polymer and Rg of the polymers were studied. Our results showed that the strongest interaction between the SWNTs and these polymers was observed first for P3HT, then MDMO-PPV, and finally MEH-PPV. We found that the interaction energy is influenced by the specific monomer structure of the polymers, SWNT radius, and chirality, but the influence of temperature is very weak. The temperature, radius, and chirality have not any important effect on the radius of gyration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.