Abstract
Copper-mediated 11C-cyanation reactions have enabled the synthesis of PET radiotracers from a range of readily available precursors and avoid the need to use more toxic Pd catalysts. In this work we adapt our recently developed 11C-cyanation of arylpinacolboronate (BPin) esters for the cGMP synthesis of [11C]LY2795050, a selective antagonist radiotracer for the kappa opioid receptor (KOR). [11C]LY2795050 was synthesized in 6 ± 1% noncorrected radiochemical yield (based on [11C]HCN, n = 3) using an automated synthesis module. Quality control testing confirmed the suitability of doses for preclinical and clinical PET imaging (radiochemical purity >99%; specific activity >900 mCi/μmol; residual Cu < 0.1 μg/mL). PET imaging was conducted in rodent and nonhuman primates, showing good brain uptake of [11C]LY2795050 and the expected distribution of KOR. Analogous imaging with [11C]carfentanil (a selective mu opioid receptor (MOR) radiotracer) revealed the anticipated regional differences in MOR and KOR distribution in the primate brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.