Abstract

BackgroundSerotonin 5-HT4 receptor (5-HT4-R) agonists are potential therapeutic agents for enterokinetic and cognitive disorders and are marketed for treatment of constipation. The aim of this study was to develop an agonist positron emission tomography (PET) ligand in order to label the active G-protein coupled 5-HT4-R in peripheral and central tissues. For this purpose prucalopride, a high-affinity selective 5-HT4-R agonist, was selected.Methods[11C]Prucalopride was synthesized from [11C]methyl triflate and desmethyl prucalopride, and its LogDoct,pH7.4 was determined. Three distinct studies were performed with administration of IV [11C]prucalopride in male rats: (1) The biodistribution of radioactivity was measured ex vivo; (2) the kinetics of radioactivity levels in brain regions and peripheral organs was assessed in vivo under baseline conditions and following pre-treatment with tariquidar, a P-glycoprotein efflux pump inhibitor; and (3) in vivo stability of [11C]prucalopride was checked ex vivo in plasma and brain extracts using high-performance liquid chromatography.Results[11C]Prucalopride was synthesized in optimised conditions with a yield of 21% ± 4% (decay corrected) and a radiochemical purity (>99%), its LogDoct,pH7.4 was 0.87. Ex vivo biodistribution studies with [11C]prucalopride in rats showed very low levels of radioactivity in brain (maximal 0.13% ID·g−1) and ten times higher levels in certain peripheral tissues. The PET studies confirmed very low brain levels of radioactivity under baseline conditions; however, it was increased three times after pre-treatment with tariquidar. [11C]Prucalopride was found to be very rapidly metabolised in rats, with no parent compound detectable in plasma and brain extracts at 5 and 30 min following IV administration. Analysis of levels of radioactivity in peripheral tissues revealed a distinct PET signal in the caecum, which was reduced following tariquidar pre-treatment. The latter is in line with the role of the P-glycoprotein pump in the gut.Conclusion[11C]Prucalopride demonstrated low radioactivity levels in rat brain; a combination of reasons may include rapid metabolism in the rat in particular, low passive diffusion and potential P-glycoprotein substrate. In humans, further investigation of [11C]prucalopride for imaging the active state of 5-HT4-R is worthwhile, in view of the therapeutic applications of 5-HT4 agonists for treatment of gastrointestinal motility disorders.

Highlights

  • Serotonin 5-HT4 receptor (5-HT4-R) agonists are potential therapeutic agents for enterokinetic and cognitive disorders and are marketed for treatment of constipation

  • The 5-HT1A/1B/1D/1E/1F, 5-HT2A/2B/2C, 5-HT4, 5-ht5A/5B, 5HT6 and 5-HT7 receptors are G-protein coupled receptors (GPCR); the 5-HT3 receptor belongs to the class of ligand-gated ion channels [1]

  • These yields are decay corrected and either determined by analysing samples taken from the reaction mixture or from activities at the start of synthesis and in the formulated product

Read more

Summary

Introduction

Serotonin 5-HT4 receptor (5-HT4-R) agonists are potential therapeutic agents for enterokinetic and cognitive disorders and are marketed for treatment of constipation. The aim of this study was to develop an agonist positron emission tomography (PET) ligand in order to label the active G-protein coupled 5-HT4-R in peripheral and central tissues. For this purpose prucalopride, a high-affinity selective 5-HT4-R agonist, was selected. The 5-HT is synthesized in enterochromaffin cells in the gut. The latter contains 90% of the 5HT in the body, from where it is released in the blood to exert a paracrine actions. The 5-HT1A/1B/1D/1E/1F, 5-HT2A/2B/2C, 5-HT4, 5-ht5A/5B, 5HT6 and 5-HT7 receptors are G-protein coupled receptors (GPCR); the 5-HT3 receptor belongs to the class of ligand-gated ion channels [1]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.