Abstract
Methods Computed tomography (CT) images of sinusitis in 91 patients were collected. By introducing boundary gradient information into the edge detection function, the sensitivity of the level set model to the boundary of different intensities of lesions was adjusted to obtain accurate segmentation results. After that, the segmented CT image was imported into Mazda texture analysis software for feature extraction. Three dimensionality reduction methods were used to screen the best texture features. Four analysis methods in the B11 module were used to calculate the misclassified rate (MCR). Results The segmentation algorithm based on an enhanced gradient level set has good segmentation results for sinusitis lesions. The radiomics results show that the raw data analysis method under the Fisher dimensionality reduction method has a low MCR (25.27%). Conclusion The enhanced gradient level set segmentation algorithm can segment sinusitis lesions accurately. The radiomics model effectively predicts the prognosis of endoscopic treatment of sinusitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and mathematical methods in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.