Abstract

Radiomics, a quantitative approach to medical imaging, employs computational methods to extract features from the images, revealing hidden characteristics of specific regions. This emerging field leverages advanced techniques to analyze a spectrum of features from modalities, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, aiming to decode tissue characteristics, disease progression, and treatment responses. The radiomics workflow integrates image acquisition, segmentation, feature selection, and data integration, utilizing advanced techniques such as deep learning, machine learning, and data mining. Radiomics demonstrates considerable potential in cancer detection and management, exhibiting high sensitivity and specificity in distinguishing between benign and malignant tumors and predicting outcomes. However, challenges such as imaging protocol variability, overfitting, and standardization requirements impede its broad clinical adoption. Innovations in multi-modal radiomics, deep learning, and genomics integration strive to mitigate these constraints. This review elucidates radiomics’ capabilities, current applications, benefits, challenges, and future directions in oncology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.