Abstract

ABSTRACTSentinel-1A is a space-borne synthetic aperture radar (SAR) system developed in the frame of the Copernicus Program. The German Aerospace Center supported the radiometric and polarimetric calibration of Sentinel-1A by the analysis of point target responses of several acquisitions considering different modes, beams, and polarization channels. An elevation dependent bias, which had not been properly predicted by the used antenna model, was found for all investigated modes. Offsets of up to 2 dB were determined during the SAR instrument calibration phase, in particular, for low and high elevation angles. Therefore, in order to correct these elevation biases, a radiometric refinement was carried out by European Space Agency in November 2015. After that, Sentinel-1A radiometric accuracy and long-term stability were analyzed over a period of 1.5 years. For this period, the absolute calibration factor and the channel imbalance were determined for the main imaging mode. Moreover, a slight drift of the derived calibration factor was observed starting from July 2016. At the same time an anomaly was detected in the front-end affecting several transmit and receive modules in one tile. The radiometric behavior of Sentinel-1A should therefore be monitored for a longer period of time, especially to detect potential degradation effects of the SAR instrument.

Highlights

  • Sentinel-1 is the first space-borne synthetic aperture radar (SAR) mission in the frame of the Copernicus program for Earth Observation directed by the European Commission in partnership with the European Space Agency (ESA)

  • Almost all modes and beams were intensively investigated for the S-1A radiometric and polarimetric calibration performed during its routine operation phase

  • The mean absolute calibration factor and its standard deviation are determined for each beam and polarization showing beam-to-beam offsets of up to 0.6 dB and a clear polarization dependency

Read more

Summary

Introduction

Sentinel-1 is the first space-borne synthetic aperture radar (SAR) mission in the frame of the Copernicus program for Earth Observation directed by the European Commission in partnership with the European Space Agency (ESA). In this study the absolute calibration factor is determined from DLR point targets using different modes, beams and polarization channels. For a well-adjusted SAR system a constant absolute calibration factor is expected valid for all modes, beams, and polarization channels.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.