Abstract
A study of radiation levels due to primary and secondary gas bremsstrahlung is carried out for the BioMedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS). The BMIT beamline, being built at present, is a major research and diagnostic tool for X-ray imaging and X-ray radiation therapy for animals and humans. For the BMIT beamline to be as flexible as possible, a movable tungsten collimator is designed. This can move vertically and assumes two positions; up and down. The BMIT beamline is, thus, able to perform two modes of operation: one white beam, the other monochromatic. Gas bremsstrahlung produced in the vacuum chamber propagates with synchrotron radiation and may enter the imaging or therapy hutch. In this study, the dose behind the collimator is investigated in each mode by assessing the energy deposition in a water phantom that surrounds the entire copper shutter-tungsten collimator unit. When estimating the dose, particular attention is given to the opening area of the collimator, since this passage leads to the imaging or therapy hutch. Also examined are the doses when a tungsten safety shutter is closed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.