Abstract

BackgroundInjuries of the tarsometatarsal joint complex ranging from purely ligamentous to multidirectionally unstable midfoot fracture-dislocations are anatomically fixed to minimize long-term sequelae including post-traumatic arthritis, pes planus deformity, and chronic pain. Lateral column disruption is commonly treated with temporary Kirschner wire (K-wire) fixation, maintaining alignment during healing and allowing resumption of physiologic motion after hardware removal. More unstable fracture patterns may require temporary cortical screw fixation to maintain adequate reduction. We evaluated the efficacy of temporary lateral column screw fixation compared to K-wire fixation for Lisfranc fracture-dislocation treatment.MethodsThis retrospective cohort study reviewed 45 patients over fourteen years who underwent Lisfranc fracture-dislocation fixation at a level-one trauma center. All patients underwent medial and middle column fixation; 31 underwent lateral column fixation. Twenty six patients remained after excluding those without electronic records or follow-up. The primary outcome was radiographic lateral column healing before and after hardware removal; secondary outcomes included pain, ambulation, and return to normal shoe wear.ResultsTwenty patients were male, with mean age 41 years. Thirteen patients underwent cortical screw fixation and twelve K-wire fixation. One had both implants. Twenty four patients underwent lateral column hardware removal; all had radiographic evidence of bony healing before hardware removal. Mean follow-up was 88.2 ± 114 weeks for all patients. The cortical screw cohort had significantly longer mean time to hardware removal (p = 0.002). The K-wire cohort had significantly more disuse osteopenia (p = 0.045) and postoperative pain (p = 0.019).ConclusionsRadiographic and clinical outcomes of unstable Lisfranc fracture-dislocation treatment support temporary lateral column screw fixation as an alternate technique.Level of clinical evidence3 (retrospective cohort study)

Highlights

  • Injuries of the tarsometatarsal joint complex ranging from purely ligamentous to multidirectionally unstable midfoot fracture-dislocations are anatomically fixed to minimize long-term sequelae including post-traumatic arthritis, pes planus deformity, and chronic pain

  • More unstable fracture patterns may not maintain adequate reduction with Kirschner wire (K-wire) fixation; these may be treated with temporary cortical screw fixation with implant removal six to twelve weeks later. In this retrospective cohort study at a high-volume trauma center, we evaluated the efficacy of temporary lateral column cortical screw fixation as an alternative to K-wire fixation for TMT joint fracture-dislocations

  • Both fixation methods used in this case series achieved the primary outcome of stable radiographic healing of the lateral column of the midfoot. Both fixation methods achieved a return to normal shoe wear and a return to mobility without assistive devices. Those fixed with K-wires were able to undergo lateral column hardware removal an average of 7.1 weeks sooner than those fixed with cortical screws despite similar demographic characteristics and an increased frequency of ipsilateral injuries, potentially due to K-wire removal during office consultation rather than during a subsequently scheduled return to the operative suite

Read more

Summary

Introduction

Injuries of the tarsometatarsal joint complex ranging from purely ligamentous to multidirectionally unstable midfoot fracture-dislocations are anatomically fixed to minimize long-term sequelae including post-traumatic arthritis, pes planus deformity, and chronic pain. Lateral column disruption is commonly treated with temporary Kirschner wire (K-wire) fixation, maintaining alignment during healing and allowing resumption of physiologic motion after hardware removal. More unstable fracture patterns may require temporary cortical screw fixation to maintain adequate reduction. We evaluated the efficacy of temporary lateral column screw fixation compared to K-wire fixation for Lisfranc fracture-dislocation treatment. The Lisfranc joint complex is further supported by soft tissues including a ligament complex extending from the second metatarsal to the medial cuneiform; the plantar component, or Lisfranc ligament, is strongest [2]. The Myerson modification of the Hardcastle classification of Lisfranc injuries divides injuries into categories based on TMT joint congruity and direction of metatarsal divergence relative to the Lisfranc joint [4] and can delineate involvement of the three midfoot columns in the injury

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call