Abstract

AbstractThe effects of plasma heating and thermal non-equilibrium on the statistical properties of a low-Reynolds-number ($Re_{\tau } = 49$) turbulent channel flow were experimentally quantified using particle image velocimetry, two-line planar laser-induced fluorescence, coherent anti-Stokes Raman spectroscopy and emission spectroscopy. Tests were conducted at two radiofrequency plasma settings. The nitrogen, in air, was vibrationally excited to $T_{vib} \sim 1240\ \mathrm{K}$ and 1550 K for 150 W and 300 W plasma settings, respectively, while the vibrational temperature of the oxygen and the rotational/translational temperatures of all species remained near room temperature. The peak axial turbulence intensities in the shear layers were reduced by 15 and 30 % in moving across the plasma for the 150 and 300 W cases, respectively. The plasma did not alter the transverse intensities. The Reynolds shear stresses were reduced by 30 and 50 % for the 150 and 300 W cases. The corresponding Reynolds shear stress correlation coefficient was also reduced, which indicates that the large-scale structures were diminished. Finally, the plasma enhanced the turbulence decay in the zero-shear regions, where the power law decay $t^{-1/n}$ exponential factor $n$ decreased from 1.0 to 0.8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.