Abstract
Conductive nanoparticles may enhance tissue heating during radiofrequency (RF) irradiation. Specific absorption rate (SAR) is known to rise with the electrical conductivity of tissue. However, no studies to date have measured the relationship between complex permittivity and nanoparticle concentration in tissue-like samples. The complex permittivities of colloids containing single-wall carbon nanotubes (SWCNTs) in normal (0.9%) saline were measured from 20 MHz to 1 GHz. Carbon concentrations ranged from 0 to 93 mM (0.06% volume), based on SWCNT weight per volume. Measurements were made with 0.02% Pluronic F108 surfactant added to the colloids to prevent SWCNT flocculation. The data were fit to the Cole-Cole relaxation model with an added constant phase angle element to correct for electrode polarization effects at low RF frequencies. Electrode polarization effects increased with carbon concentration. The real parts of the permittivities of the colloids increased with carbon concentration. The static conductivity rose linearly with carbon concentration, doubling from 0 to 93 mM. The SAR of the colloids is expected to increase with RF frequency, based on the properties of the imaginary part of the permittivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.