Abstract
The present study investigated the core body temperature (CBT) response of free-moving adult male and female C57BL/6 mice, during and following a 2-h exposure to 1.95 GHz RF-EMF within custom-built reverberation chambers, using temperature capsules implanted within the intraperitoneal cavity and data continuously logged and transmitted via radiotelemetry postexposure. Comparing RF-EMF exposures (WBA-SAR of 1.25, 2.5, 3.75, and 5 W/kg) to the sham-exposed condition, we identified a peak in CBT within the first 16 min of RF-EMF exposure (+0.15, +0.31, +0.24, +0.37°C at 1.25, 2.5, 3.75, and 5 W/kg respectively; statistically significant at WBA-SAR ≥ 2.5 W/kg only), which largely dissipated for the remainder of the exposure period. Immediately before the end of exposure, only the CBT of the 5 W/kg condition was statistically differentiable from sham. Based on our findings, it is apparent that mice are able to effectively compensate for the increased thermal load at RF-EMF strengths up to 5 W/kg. In addition, the elevated CBT at the end of the exposure period in the 5 W/kg condition was statistically significantly reduced compared to the sham condition immediately after RF-EMF exposure ceased. This would indicate that measures of CBT following the end of an RF-EMF exposure period may not reflect the actual change in the CBT of mice caused by RF-EMF exposure in mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.