Abstract

BackgroundThe volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conductive fluids, e.g., gold nanoparticles (AuNPs) could enlarge these zones by delaying roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs in a computer modeling study and ex vivo experiments to investigate their effect on coagulation zone volumes.MethodsThe electrical conductivity of substrates doped with normal saline or AuNPs was assessed experimentally on agar phantoms. The computer models, built and solved on COMSOL Multiphysics, consisted of a cylindrical domain mimicking liver tissue and a spherical domain mimicking a doped zone with 2, 3 and 4 cm diameters. Ex vivo experiments were conducted on bovine liver fragments under three different conditions: non-doped tissue (ND Group), 2 mL of 0.9% NaCl (NaCl Group), and 2 mL of AuNPs 0.1 wt% (AuNPs Group).ResultsThe theoretical analysis showed that adding normal saline or colloidal gold in concentrations lower than 10% only modifies the electrical conductivity of the doped substrate with practically no change in the thermal characteristics. The computer results showed a relationship between doped zone size and electrode length regarding the created coagulation zone. There was good agreement between the ex vivo and computational results in terms of transverse diameter of the coagulation zone.ConclusionsBoth the computer and ex vivo experiments showed that doping with AuNPs can enlarge the coagulation zone, especially the transverse diameter and hence enhance sphericity.

Highlights

  • The volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off

  • Our results suggest that when RFA is performed on highly conductive substrates, larger coagulation zone volumes can be created at low voltages (50 V)

  • The theoretical analysis showed that the addition of normal saline or colloidal gold (0.01 wt%) at concentrations lower than 10% only modify the electrical conductivity of the doped substrate and have very little effect on the thermal characteristics

Read more

Summary

Introduction

The volume of the coagulation zones created during radiofrequency ablation (RFA) is limited by the appearance of roll-off. Doping the tissue with conduc‐ tive fluids, e.g., gold nanoparticles (AuNPs) could enlarge these zones by delaying roll-off. Our goal was to characterize the electrical conductivity of a substrate doped with AuNPs in a computer modeling study and ex vivo experiments to investigate their effect on coagulation zone volumes. Radiofrequency (RF) ablation (RFA) is a minimally invasive procedure used to thermally destroy tumors [1]. The coagulation zone size is strongly limited by the appearance of a phenomenon called roll-off, which consists of the cessation of RF power due to a sudden increase in electrical impedance when the active electrode is completely surrounded by desiccated tissue (i.e., at ~ 100 °C) [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call