Abstract

Observations of the ionospheric electron density modified by a powerful wave of the Sura HF heating facility were carried out in Russia at middle latitudes in August 2002. Amplitude scintillations and variations of the phase of VHF signals from Russian orbiting satellites passing over the heated region along the chain of three satellite receivers have been recorded. The experimental data were converted to electron density maps using a stochastic inversion. Tomographic measurements conducted during a low magnetic activity revealed that HF powerful waves can produce significant electron density disturbances up to heights significantly exceeding altitudes of the F layer peak. Both large-scale plasma enhancements and small-scale density irregularities can be generated by the HF radiation. Wavy density structures were also observed within a sector which is much wider than the area covered by the main lobe of the heating antenna. Small-scale density irregularities are mostly field-aligned although large-scale structures can be detected within a much larger area. A distinctive peculiarity of electron density changes occurred during heating is producing a zone of low density inside the area illuminated by the antenna beam. The results indicate that satellite radio tomography and scintillation measurements are effective diagnostic techniques giving a valuable information to studies of effects induced by HF modification. The complete system of plasma density disturbances describing by the theory of “the magnetic zenith effect” has been for the first time studied in this Letter. A good agreement between the theory and experimental data has been obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.