Abstract

Axially and temporally resolved optical emission structures were investigated in the rf sheath region of a parallel plate capacitively coupled rf discharge (13.56 MHz) in pure oxygen and tetrafluoromethane. The rf discharge was driven at total pressures of between 10 and 100 Pa, gas flow rate of 3 sccm and rf power in the range 5–100 W. In particular, the emission of the atomic oxygen at 844.6 nm (3p3P → 3s3S0) and the atomic carbon at 193 nm (3s1P0 → 2p1D) were imaged with a lens onto the entrance slit of a spectrometer and detected by a fast ICCD-camera. The spatio-temporally resolved analysis of the emission intensity during the rf cycle (73.75 ns) provides two significant excitation processes inside the rf sheath: the electron impact excitation at the sheath edge, and heavy particle impact excitation in front of the powered electrode. In oxygen plasma the emission of atomic oxygen was found in both regions whereas in tetrafluoromethane the emission of atomic carbon was observed only in front of the powered electrode. The experimental results reveal characteristic dependence of the emission pattern in front of the powered electrode on plasma process parameters (self-bias voltage, pressure) and allow an estimation of the excitation threshold energy and effective cross section of energetic heavy particle loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.