Abstract
AbstractRadio observations provide the most direct information on non-thermal electrons in stellar flares and in the coronae of late-type stars. Radio emissions of single main-sequence F, G, and of many K stars have recently been discovered, in addition to the well-known dwarf M stars. Their long-duration radio flares with low circular polarization, slow variations and broad bandwidth can be attributed to gyrosynchrotron emission of mildly relativistic electrons. The same holds for the low-level (‘quiescent’) radio emission. On the other hand, highly polarized radio flares of M stars have been interpreted by coherent emissions from loss-cone instabilities of magnetically trapped electrons. These conjectures are consistent with recent VLBI observations. The identification of the radio emission process allows to estimate the high-energy component of the flare and compare it to the total flare energy. The weakly polarized radio emission may serve as a proxy for hard X-ray signatures of relativistic electrons. The fraction of primary energy released into energetic electrons then appears to be large and similar to solar flares.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.