Abstract

Radio observations provide the most direct information on nonthermal electrons in stellar flares and in the coronae of late-type stars. Radio emissions of single main-sequence F, G, and of many K stars have recently been discovered, in addition to the well-known dwarf M stars. Their long-duration radio flares with low circular polarization, slow variations and broad bandwidth can be attributed to gyrosynchrotron emission of mildly relativistic electrons. The same holds for the low-level (‘quiescent’) radio emission. On the other hand, highly polarized radio flares of M stars have been interpreted by coherent emissions from loss-cone instabilities of magnetically trapped electrons. These conjectures are consistent with recent VLBI observations. The identification of the radio emission process allows to estimate the high-energy component of the flare and compare it to the total flare energy. The weakly polarized radio emission may serve as a proxy for hard X-ray signatures of relativistic electrons. The fraction of primary energy released into energetic electrons then appears to be large and similar to solar flares.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.