Abstract

Multiple patterning technology has become an essential process. In the commonly used self-aligned multiple patterning process, the spacer should be dense at low temperatures and have a high elastic modulus. To meet these conditions, many thin-film deposition methods, such as plasma-enhanced atomic layer deposition, have been studied. We investigated remote plasma atomic layer deposition (RPALD) technology with a DC positive bias. After applying bias voltage to the plasma region, changes in the plasma properties, such as density and flux, were examined and applied to SiO2 deposition. When DC positive bias was applied, the sheath voltage decreased, causing an increase in the radical density, which contributed to the surface reaction. In an elastic recoil detection analysis, the application of 200 V reduced the hydrogen content of the film from 11.89% to 10.07% compared with no bias; an increase in SiO2 film density from 2.32 to 2.35 g cm−3 was also measured. The elastic modulus and hardness were shown to increase through a nano-indenter analysis and surface roughness improved with the suppression of energetic ions impinging on the film surface. Thus, the application of DC positive bias during the RPALD process effectively improved the physical, chemical, and mechanical properties of SiO2 film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.