Abstract

Radical group transfer is a powerful tool for the formation of C-C bonds. These processes typically involve radical addition to C-C π bonds, followed by fragmentation of the resulting cyclic intermediate. Despite the advantageous lability of organosilanes in this context, silicon-tethered radical acceptor groups have remained underexplored in radical group transfer reactions. We report a general photoredox-catalyzed protocol for the radical group transfer of vinyl and alkynyl silanes onto sp3 carbons, using activated and unactivated iodides as radical precursors. Our method displays high diastereoselectivity and excellent functional group tolerance, and enables direct formation of group transfer products by in situ ring opening. Mechanistic investigations revealed that the reaction proceeds via an unusual dual catalytic cycle, resulting in an overall redox-neutral process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call