Abstract

Each Chinese character is comprised of radicals, where a single character (compound character) contains one (or more than one) radicals. For human cognitive perspective, a Chinese character can be recognized by identifying its radicals and their spatial relationship. This human cognitive law may be followed in computer recognition. However, extracting Chinese character radicals automatically by computer is still an unsolved problem. In this paper, we propose using an improved sparse matrix factorization which integrates affine transformation, namely affine sparse matrix factorization (ASMF), for automatically extracting radicals from Chinese characters. Here the affine transformation is vitally important because it can address the poor-alignment problem of characters that may be caused by internal diversity of radicals and image segmentation. Consequently we develop a radical-based Chinese character recognition model. Because the number of radicals is much less than the number of Chinese characters, the radical-based recognition performs a far smaller category classification than the whole character-based recognition, resulting in a more robust recognition system. The experiments on standard Chinese character datasets show that the proposed method gets higher recognition rates than related Chinese character recognition methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.