Abstract

We studied the diffusivities of a nitroxide radical at various temperatures in six glass-forming molecular liquids by electron spin resonance. By comparing the radical diffusivities and solvent self-diffusivities, we found that the radical diffusivities are lower than the self-diffusivities at high temperatures and approach them at low temperatures in all liquids. This crossover behavior was considered as evidence that a single-molecule diffusion process transforms into a collective process with temperature lowering. The crossover phenomenon was analyzed by a novel, simple diffusion model, combining collective and single-molecule diffusion processes, and it was compared to the Arrhenius crossover phenomenon. The obtained results suggest that future studies of tracer diffusion could contribute to a better understanding of diffusion mechanisms in glass-forming liquids. The proposed diffusion model could be used to study the crossover phenomena of tracer diffusion measured by other techniques, and it could serve as a base for developing more advanced models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.