Abstract

The processes of radiative recombination and impact ionization in light-emitting structures based on bulk semiconductors, heterostructures with high potential barriers, nanostructures with deep quantum wells, and nanocrystals with quantum dots are reviewed. It is shown that enhancement of the quantum efficiency and luminescence optical power in all the investigated structures is caused by a common physical mechanism, specifically, the creation of additional electron–hole pairs during impact ionization by hot carriers heated at the high band offset at the heterointerface under current pumping or by the multiplication of carriers in nanocrystals upon multiexciton generation under illumination by high-energy photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.