Abstract

We study the effect of radiative heating on the evolution of thin magnetic flux tubes in the solar interior and on the eruption of magnetic flux loops to the surface. Magnetic flux tubes experience radiative heating because (1) the mean temperature gradient in the lower convection zone and the overshoot region deviates substantially from that of radiative equilibrium, and hence there is a non-zero divergence of radiative heat flux; and (2) the magnetic pressure of the flux tube causes a small change of the thermodynamic properties within the tube relative to the surrounding field-free fluid, resulting in an additional divergence of radiative heat flux. Our calculations show that the former constitutes the dominant source of radiative heating experienced by the flux tube. In the overshoot region, the radiative heating is found to cause a quasi-static rising of the toroidal flux tubes with an upward drift velocity ∼ 10-3|δ| cm s-1, where δ ≡ ∇e − ∇ad < 0 describes the subadiabaticity in the overshoot layer. The upward drift velocity does not depend sensitively on the field strength of the flux tubes. Thus in order to store toroidal flux tubes in the overshoot region for a period comparable to the length of the solar cycle, the magnitude of the subadiabaticity δ(< 0) in the overshoot region must be as large as ∼ 3 × 10−4. We discuss the possibilities for increasing the magnitude of δ and for reducing the rate of radiative heating of the flux tubes in the overshoot region. Using numerical simulations we study the formation of ‘Ω’-shaped emerging loops from toroidal flux tubes in the overshoot region as a result of radiative heating. The initial toroidal tube is assumed to be non-uniform in its thermodynamic properties along the tube and lies at varying depths beneath the base of the convection zone. The tube is initially in a state of neutral buoyancy with the internal density of the tube plasma equal to the local external density. We find from our numerical simulations that such a toroidal tube rises quasi-statically due to radiative heating. The top portion of the nonuniform tube first enters the convection zone and may be brought to an unstable configuration which eventually leads to the eruption of an anchored flux loop to the surface. Assuming reasonable initial parameters, our numerical calculations yield fairly short rise times (2–4 months) for the development of the emerging flux loops. This suggests that radiative heating is an effective way of causing the eruption of magnetic flux loops, leading to the formation of active regions at the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call