Abstract

Irradiance and temperature variations during tidal cycles modulate microphytobenthic primary production potentially by changing the radiative energy balance of photosynthetic mats between immersion and emersion and thus sediment daily net metabolism. To test the effect of tidal stages on the radiative energy budget, we used microsensor measurements of oxygen, temperature, and scalar irradiance to estimate the radiative energy budget in a coastal photosynthetic microbial mat during immersion (constant water column of 2cm) and emersion under increasing irradiance. Total absorbed light energy was higher in immersion than emersion, due to a lower reflectance of the microbial mat, while most (> 97%) of the absorbed light energy was dissipated as heat irrespective of tidal conditions. During immersion, the upward heat flux was higher than the downward one, whereas the opposite occurred during emersion. At highest photon irradiance (800μmolphotonm-2s-1), the sediment temperature increased ~ 2.5°C after changing the conditions from immersion to emersion. The radiative energy balance showed that less than 1% of the incident light energy (PAR, 400-700nm) was conserved by photosynthesis under both tidal conditions. At low to moderate incident irradiances, the light use efficiency was similar during the tidal stages. In contrast, we found an ~ 30% reduction in the light use efficiency during emersion as compared to immersion under the highest irradiance likely due to the rapid warming of the sediment during emersion and increased non-photochemical quenching. These changes in the photosynthetic efficiency and radiative energy budget could affect both primary producers and temperature-dependent bacterial activity and consequently daily net metabolism rates having important ecological consequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call