Abstract
In this paper satellite-derived radiative energy budget such as shortwave radiative heating, longwave radiative heating and net radiation balance have been studied for the post-onset phase of summer monsoon 1979. Since clouds play an important role in determining diabatic heating field as well as being a reflection of status of the monsoon itself, the day to day evolution of clouds from TIROS-N satellite has been made. Satellite-derived radiative heating rates from surface to 100 hPa were computed for each 100 hPa thickness layer. These heating rates were then compared with the observed latitudinal distribution of total radiative heating rates over the domain of the study.From the results of our study it was found that the characteristic features such as net radiative heating rates of the order of 0.2°C/day at upper tropospheric layer (100–200 hPa) and cooling throughout the lower tropospheric layers with relatively less cooling between 500–700 hPa layer observed in a case of satellite-derived radiative energy budget agree well with the characteristic features of observational radiative energy budget over the domain of the study. Therefore, it is suggested that radiative energy budget derived from satellite observations can be used with great potential and confidence for the evolution of the complete life cycle of the monsoon over the Indian region for different years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.