Abstract
Recent progress towards an increased understanding of the physical processes in the divertor and scrape-off layer (SOL) plasmas in DIII-D has been made possible by a combination of new diagnostics, improved computational models and changes in divertor geometry. The work focused primarily on ELMing H mode discharges. The physics of partially detached divertor plasmas, with divertor heat flux reduction by divertor radiation enhancement using D2 puffing, was studied intwo dimensions, and a model of the heat and particle transport was developed that includes conduction, convection, ionization, recombination and flows. Plasma and impurity particle flows were measured with Mach probes and spectroscopy and compared with the UEDGE model. The model now includes self-consistent calculations of carbon impurities. Impurity radiation was increased in the divertor and SOL with `puff and pump' techniques using SOL D2 puffing, divertor cryopumping and argon puffing. The important physical processes in plasma-wall interactions were examined with a DiMES (divertor material evaluation system) probe, plasma characterization near the divertor plate and the REDEP code. Experiments comparing single null plasma operation in baffled and open divertors demonstrated a change in the edge plasma profiles. These results are consistent with a reduction in the core ionization source calculated with UEDGE. Divertor particle control in ELMing H mode with pumping and baffling resulted in a reduction in H mode core densities to ne/nGr ≈ 0.25 (with nGr the Greenwald density). Divertor particle exhaust and heat flux were studied as the plasma shape was varied from a lower single null to a balanced double null, and finally to an upper single null.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have