Abstract

The purpose of this study is to examine the interaction of radiative and conductive transfer for a radiatively participating real gas stagnant in a cylindrical enclosure with gray diffuse walls. Consideration of reflecting boundaries represents an extension of previous black wall studies. Examination of radiative transfer was made by the zone method with gas radiative properties furnished by the weighted sum of gray gases model. Directed flux areas are expressed as the weighted sum of gray gas total exchange areas which are evaluated using the matrix formulation method from direct exchange areas. Axial and radial gas temperatures are examined along with wall heat flux or temperature for respective cases of either specified wall temperatures or heat fluxes. Emphasis is placed on examining results to show the effects of wall emittance and duct diameter. Results for heat generation within the gas are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.