Abstract

AbstractThe effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation‐induced radical polymerization of binary systems consisting of glass‐forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA–propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass‐forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA–triacetin and HEMA–isoamyl acetate, maximum and minimum rates were observed in monomer‐rich compositions but not at low monomer concentrations. Furthermore, in the HEMA–dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA–poly(methyl methacrylate) system were also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.