Abstract

Ionizing radiation may cause failures in ICs due to gain degradation of individual devices. The base current of irradiated bipolar devices increases with total dose, while the collector current remains relatively constant. This results in a decrease in the current gain. Lateral PNP (LPNP) transistors typically exhibit more degradation than vertical PNP devices at the same total dose, and have been blamed as the cause of early IC failures at low dose rates. It is important to understand the differences in total-dose response between devices with heavily- and lightly-doped emitters in order to compare different technologies and evaluate the applicability of proposed low-dose-rate hardness-assurance methods. This paper addresses these differences by comparing two different LPNP devices from the same process: one with a heavily-doped emitter and one with a lightly-doped emitter. Experimental results demonstrate that the lightly-doped devices are more sensitive to ionizing radiation and simulations illustrate that increased recombination on the emitter side of the junction is responsible for the higher sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.