Abstract

The decay rate of the Hg 61P1 level was measured as a function of cold spot temperature (Hg density) and buffer gas pressure in cylindrical, sealed fused silica cells. The decay rates were obtained using a time-resolved laser-induced 185 nm fluorescence experiment with multi-step excitation. Cold spot temperatures from 25 to 100 °C were studied. The Hg densities for this temperature range and with no buffer gas yield the lowest possible decay rates due to radiation trapping with partial frequency redistribution. Decay rates with argon buffer gas pressures of 3 and 30 Torr were also studied. The results are in agreement with published data from a discharge afterglow experiment. Monte Carlo simulations of radiation transport in the cells, including the effects of hyperfine and isotope structure, the effects of foreign gas broadening, and partial frequency redistribution are compared to the experimental data. Reasonably good agreement is obtained, however there is evidence of quenching of Hg 61P1 atoms in collisions with ground state Hg and Ar atoms. An analytic formula for the fundamental mode trapped decay rate of the 61P1 level, which is applicable over a substantial region of parameter space, was devised from the Monte Carlo results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call